
State of
Visual Testing
Learn how teams utilize visual testing to

build and deploy flawless frontends

2020

© Perceptual Inc. 2020

State of Visual Testing Report 2

Visual testing has emerged in recent years as a modern solution for

teams developing, testing, and deploying frontends. As more teams adopt

visual testing and the ecosystem matures, we at Percy want to share our

experience, guidance, and insights.

By analyzing our platform data along with
collected survey data, we’ve set out to provide the
most comprehensive visual testing report yet.

Introduction

Whether you’re just getting started with visual testing or you’re looking for guidance to mature your current efforts,

this report is for you. In this report, we’re sharing an overview of how visual testing works, as well as our benchmarks

and best practices for implementing visual testing. We’re thrilled to publish this information and hope it starts a

meaningful conversation about the future of visual testing.

Founded in 2015, Percy has pioneered
the path forward for visual testing.
Engineering teams from companies like
Condé Nast, Basecamp, Intercom, and
Canva use our all-in-one visual testing
and review platform.

Learn more at percy.io >

Table of contents:

A word about the data···3

Visual testing overview···5

The evolution of visual testing···7

Benefits of visual testing··10

How visual testing works···12

Visual testing best practices··17

https://percy.io/?pdf&utm_medium=pdf&utm_source=percy_report&utm_content=sovt

State of Visual Testing Report 3

A word about the data

In compiling this report, we collected and analyzed data from survey responses and our platform.

Percy platform data
The Percy platform data referenced in this report includes data from January 2018 to December 2019.

That data is made up of:

• 35,000 unique projects. Percy projects align with organizations’ unique applications, websites, or

component libraries that they’re testing. Percy builds are organized in projects.

• 350 million screenshots rendered. A screenshot is a rendering of a web page or component. Individual

screenshots get grouped into snapshots that include multiple permutations across widths and browsers.

We have a wide range of users and teams utilizing Percy—from open source projects to Fortune 500 companies. Here

is a breakdown of organizations using Percy by size and industry:

The Percy platform data presented in this report will help us gain an understanding of how teams are currently

utilizing visual testing and help us to provide benchmarks for several aspects of visual testing.

Known Percy organizations by size Known Percy organizations by industry

Organization size by number of employees

Pe
rc

en
t o

f a
ll

kn
ow

n
Pe

rc
y

or
ga

ni
za

tio
ns

0%

5%

10%

15%

20%

25%

30%

5001+1001-5000201-100051-20011-501-10

State of Visual Testing Report 4

Frontend testing survey data
In November and December 2019, we received over 1500 responses to our frontend testing survey. We distributed

our survey via Twitter and to our email database.

The survey data presented in this report is a diverse and representative look at the developer community with over

100 countries represented. Here is a breakdown of survey respondents by job title and years of experience, as well as

their organizations by size and industry:

Survey respondents by organization size Survey respondents by industry

We really appreciate the contributions from the developer community and believe it provides an accurate look at how

teams approach frontend testing and perceive visual testing.

Survey respondents by job title Survey respondents by years of experience

0%

10%

20%

30%

40%

50%

5001+1001-5000201-100051-20011-501-10

Organization size by number of employees

Pe
rc

en
t o

f a
ll

su
rv

ey
 re

sp
on

de
nt

s

0%

10%

20%

30%

40%

Over 10 years5 to 10 years2 to 5 years1 to 2 yearsLess than 1 year

Years of engineering experience

Pe
rc

en
t o

f a
ll

su
rv

ey
 re

sp
on

de
nt

s

Frontend developer

Full-stack developer

Designer or UX engineer

QA tester or engineer

Engineering manager

Product manager

State of Visual Testing Report 5

Visual testing overview

Sometimes referred to as automated UI testing or visual

regression testing, visual testing checks software from a

purely visual standpoint.

Visual testing is all about what your
end users see and interact with.

Visual testing is a great complement to functional and

manual testing but provides distinct added value. In this

section, we’ll examine the commonalities and differences.

Visual testing vs. functional testing

Visual testing, functional testing, and manual testing

Visual
testing

Functional
testing

Manual
testing

Functional testing checks that software is behaving as it should. By

combining test automation and image processing, visual testing checks that

software looks as it should.

Functional testing is a critical part of the software development lifecycle but

is not equipped to check applications’ visual elements.

Trying to assert visual “correctness” with test assertions results in a test suite filled with brittle tests that constantly

need to be rewritten. There are so many things that can make your tests “pass” while resulting in visual regressions—

CSS class attributes can change, overriding classes can be applied, and the list goes on. By asserting that certain

classes are applied or checking for styles, you’re not actually testing your frontend visually. It’s also hard to account for

visual bugs caused by rendering in different browsers or across different screen sizes.

Visual testing solves those challenges by testing software from a purely visual
standpoint regardless of the code underneath.

Visual testing is similar to functional testing in that it’s designed to be an automated process that runs alongside code

reviews. Unlike functional testing, however, visual tests don’t pass or fail. Visual testing simply detects visual changes

and provides a review process to determine whether or not the changes are correct.

Functional testing refers to software
testing practices such as unit testing,
acceptance testing, integration, and end-
to-end testing.

State of Visual Testing Report 6

Visual testing vs. functional testing (continued)

Visual testing can be done at

different levels of granularity, from

components to end-to-end tests, as

outlined in the figure on the right.

In many ways, visual testing is

more flexible than our traditional

categorizations of functional testing

and can be done on static sites,

HTML templates, PDFs, and more.

Visual testing and review workflow

New feature pushed,
visual tests run

changes
changes

changesNo visual changes
detected

changes
changes

changesVisual changes
detected

changesVisual changes
approved

changes
Changes requested

Where visual testing fits in with unit, integration, and end-to-end testing

Visual testing vs. manual testing
Whether done by individual developers, a dedicated internal team, or a hired external firm, manual QA is inherently

resource-intensive and error-prone.

By combining human review processes with workflow automation and technology,
visual testing provides a more accurate and scalable approach to UI testing.

Similar to manual QA, the human

component is crucial in visual

testing. Although automation

offloads the initial work of detecting

visual changes, visual testing

requires human judgment.

Without the same biases and

limitations that humans have, visual

testing is better at preventing even

the most subtle visual regressions.

It also provides feedback when

elements haven’t changed—

something that is harder to achieve

with manual QA alone.

Most importantly, visual testing has virtually no limitations to the breadth of UI covered, the depth of states, browsers,

and devices checked, or the frequency with which it can run.

Visual testing for components and design systems provides isolated, unit-level
coverage of specific UI elements and variations, and how they change over time.

Visual testing can be added to existing integration tests to test more complex UI
states from a visual standpoint.

End-to-end tests can also provide a great baseline for adding visual testing,
expanding testing coverage to include full-page UIs, and the entire context of

what a user sees and interacts with within a real application.

Automated visual testing process
kicked off to detect visual changes

Visual review required to action
detected visual changes

State of Visual Testing Report 7

The evolution of visual testing

Software development teams face more pressure than ever to keep up with mounting consumer expectations and

competition. Releasing software updates more frequently and across more devices increases the risks of releasing

bug-ridden software.

To help software development teams minimize those risks, the software testing market has exploded with

methodologies, tools, and processes over the last several years. Software testing and the culture surrounding it has

been instrumental in helping teams build and deploy high-quality products.

From our survey, 58% of respondents utilize some form of software testing.

For respondents from companies with more than 500 employees, software testing is even more commonplace, with

76% utilizing unit testing or end-to-end testing in isolation or together.

Additionally, test automation supported by continuous integration and

continuous deployment (CI/CD) is a popular practice amongst more mature

organizations. Cross-browser automation is gaining traction to help teams

automate software testing efforts across fragmented browsers, operating

systems, and devices.

Current software testing and automation practices by organization size

0% 10% 20% 30% 40% 50% 60% 70%

Continuous integration (CircleCI,
Travis, etc.)

End-to-end testing (Selenium,
Cypress, etc.)

Unit testing (Jest, Enzyme, Jasmine,
Mocha, etc.)

Percent of all survey respondents

Continuous integration (CI) helps teams
integrate their code into a shared code
repository seamlessly, while continuous
delivery (CD) enables efficient
deployments to production. CI/CD tools
integrate with source control systems
to commit, build, automate tests, and
deploy with little human involvement.

500+ employees51 to 500 employees1 to 50 employees

Cross-browser automation

State of Visual Testing Report 8

Much of the current testing tooling and culture revolves around ensuring software works as intended, leaving gaps in

how teams test frontends from a visual standpoint. To fill those gaps, manual testing has been the de facto frontend

testing practice.

The evolution of visual testing (continued)

Current manual testing practices

Over 67% of all respondents do
some kind of manual QA, and for
27% of respondents, it’s their only
form of software testing.

With manual QA alone, many of the challenges of

frontend testing persist. In our survey, we asked what

the most significant challenges are when it comes to

frontend testing.

The top-cited frontend challenges are: supporting multiple browsers and devices,
time spent manually testing, and writing, running, and managing tests.

Only ad hoc manual QA

Only dedicated QA team

Both

No manual QA testing

Biggest frontend testing challenges by organization size

0% 10% 20% 30% 40% 50%

500+ employees51 to 500 employees1 to 50 employees

Writing, running, and managing tests

Supporting many browsers and devices

Time spent manually checking UI

Keeping our UI consistent

Fear of breaking something during refactors

Implementing designs

Fixing bugs in production

Percent of all survey respondents

Sentiments across different organization sizes varied. While smaller organizations found it more challenging to fix

bugs and implement designs, larger organizations cited the fear of breaking something during refactors and keeping

their UI consistent as their most significant challenges.

State of Visual Testing Report 9

In the past two years, we’ve seen an
average of 36% quarterly growth in
new projects created on the Percy
platform.

We foresee that growth to accelerate as teams

automate more of their QA work and augment their

functional tests with visual testing.

Visual testing adoption
There have been a few attempts to automate UI testing in the last few years, including open-source screenshotting

libraries and record-and-replay tools. As technology and tooling have evolved, however, visual testing has emerged

as the most scalable and holistic approach to testing visual elements of frontends.

From survey data, 47% of
respondents are currently involved
in projects involving visual testing
or have in the past—another 24%
plan to in the future.

Visual testing has really only been commercially

available for the past four years, so it’s not too surprising

that 28% of respondents weren’t familiar with visual

testing. Despite that statistic, we’ve seen adoption

accelerate in the past few years.

Experience with visual testing

Cumulative project creation growth on the Percy platform

0
Q4 2019Q2 2019Q4 2018Q2 2018

Quarter

Pe
rc

y
pr

oj
ec

ts

Over a year

Less than a year

Currently implementing it

Have utilized it in the past

Plan to implement in the future

Have no idea what it is

State of Visual Testing Report 10

Benefits of visual testing

In this section, we’ll look into the major advantages that visual testing has over functional testing and manual QA.

From day-to-day operation to specific use-cases like website redesigns, visual testing helps teams save time and have

more confidence in their UI. In our survey, we asked which benefits of visual testing are the most important.

Perceived benefits of visual testing

Getting complete confidence with visual testing

When making code changes, it’s often a fear of the unknown that causes the most stress—whether it’s fear of

breaking something or uncertainty about the full scope of a design implementation. That risk, and the inability to

mitigate it, is why teams spend time and resources manually looking for visual bugs. It’s also why teams end up trying

to write functional tests to prevent visual regressions.

Visual testing automates that work, empowering you to merge and deploy with full
confidence that your app will look exactly as it should across browsers and screen sizes.

In addition to preventing bugs, visual testing provides continuous visual feedback regardless of the context of the

change or the “correctness” of the change.

In situations where your UI shouldn’t change—like deleting CSS, refactoring CSS, or upgrading dependencies—visual

testing gives you confidence that your entire UI has remained stable. That built-in coverage not only extends to the

breadth of your UI—from your most critical flows down to your 404 page—but also to the combinations of those pages

across browsers and screen sizes.

54% of survey
respondents cited
catching bugs or
regressions as a
benefit of visual
testing.

The next most important cited

benefits were saving time spent

manually testing, and confidence

when doing refactors.
0% 10% 20% 30% 40% 50% 60%

Writing fewer
functional tests

Testing across
browsers and devices

UI/UX consistency

Time saved doing
manual QA

Catching visual bugs
or regressions

Percent of all survey respondents

State of Visual Testing Report 11

Saving time and resources with visual testing

Relying on humans to spot visual changes is time-consuming and asynchronous from development cycles. Placing

the responsibility of manual QA on individual developers breeds fear of shipping updates, negatively impacts

productivity, and ultimately leads to visual bugs slipping into production. To offset those downsides, organizations turn

to dedicated manual QA functions. Hiring internal resources or working with external firms, however, can come with

high overhead and operating costs.

Either way, you’re losing valuable engineering time or spending resources on overhead and operating costs that don’t

scale as you improve your coverage or grow your product.

Visual testing scales with a level
of precision not feasible with the
human eye, at a faster rate than the
brain can work, and at a fraction of
the cost.

The ability to scale across the full breadth of your

product at the speed of development is crucial, but

manual QA lacks that scalability. The cost of manual

QA increases linearly but gets more expensive as you

add more complexity. Visual testing has virtually no

limitations to scale and has a low incremental cost that

doesn’t increase exponentially with complexity.
Cost of visual testing versus manual QA

0

Depth and breadth of coverage over time

C
o

st
 (
ti

m
e

 a
n

d
 r

e
so

u
rc

e
s)

Manual QAVisual testing

The time-saving and confidence-boosting benefits of visual testing also extends to
teammates other than developers.

For designers verifying the implementation of designs, product managers staying in the loop, or product marketers

grabbing updated UI screenshots, visual testing provides immense value to cross-functional product teams.

State of Visual Testing Report 12

Screenshots are rendered
across screen sizes and

browsers

How visual testing works

Visual testing works by comparing UI screenshots against baselines to see if anything has changed between the

two. By integrating with your test suite and workflow, visual testing is designed to run on every commit, providing

continuous visual feedback and detecting visual changes across browsers and screen sizes. The visual review

process is vital to evaluate surfaced feedback.

To make the visual testing process as efficient and useful as possible, visual testing platforms like Percy handle the

end-to-end process and technology. In our survey, we asked what was most important when it came to visual testing

platforms.

How the visual testing and review process works

Easy implementation
and the speed and
accuracy of diffs are
the most important
aspects of visual
testing platforms.

In this section, we’ll review how visual

testing works and some benchmarks

within each area:

• Integrating visual testing

• Running visual test suites

• Snapshot rendering

• Visual diff detection

• Visual review workflow

Most important aspects of a visual testing platform

0% 10% 20% 30% 40%

Collaborating with team

The UI/UX of visual review tool

Integrating with tools and processes

Fast builds

Easy implementation

Percent of all survey respondents

Test suite runs locally or as
part of your CI/CD build

Commands for visual testing
are called from within your

test suite

Screenshots are compared
against baselines and

analyzed for visual changes

Get notified if visual
changes are detected or if

you’re ready to merge

Review visual changes,
merge and continue

iterating frontend

Controlling when and where tests run

State of Visual Testing Report 13

Visual testing for components

Testing components that get used in different variations and contexts

across your app, or even across several properties, is a good way to get

comprehensive visual testing coverage. It’s also a good way to isolate visual

changes on specific components rather than having to review a single

change across several impacted screens.

If you have a well-maintained component library or utilize a component

library like Storybook, this approach may be the fastest way for you to get

started with visual testing.

Visual testing for full pages

Adding visual testing to full pages is a great way to get comprehensive test

coverage with relatively low effort. Snapshots can be easily integrated into

acceptance tests or end-to-end tests, providing screen renderings of all

your essential flows and pages, as well as more complex views like menu

dropdowns and different user states.

It can be integrated as an extension of your existing functional test suite or a

simple standalone script like Percy’s PercyScript that captures different parts

of your application for visual testing.

Integrating visual testing
When setting up your visual tests, there are two major paths—visual testing for components or for full pages.

Component-driven development is getting more popular; 87.5% of our survey respondents reported that they utilize

components as part of their development processes.

Our platform data, however, paints a different picture.

Percy integrates directly with Storybook,
consuming the built UI components
for visual testing across browsers and
widths. This approach is perfect if your
application or website depends solely on
your component library.

Learn about Percy’s Storybook SDK >

Just 19% of Percy projects test
components rather than full pages.

That may be because the processes around

component-driven development and the degrees to

which frontends depend on components still vary

widely. Depending on the nature of your project and

your existing test suite, they both provide different

levels of granularity and benefits.

With Percy, you can integrate visual
testing into web applications built in
any language or tested with any testing
framework. Percy also has SDKs to
integrate with your end-to-end test
frameworks such as Cypress.

Learn more about Percy’s SDKs >

Active Percy projects by type of integration

Percy projects for components

Percy projects for full pages

Because components exist within the full context of your application—not as isolated elements—visual testing for full

pages may be a more straightforward approach to visual testing.

https://docs.percy.io/docs/storybook?pdf&utm_medium=pdf&utm_source=percy_report&utm_content=sovt
https://docs.percy.io/docs/sdks?pdf&utm_medium=pdf&utm_source=percy_report&utm_content=sovt

State of Visual Testing Report 14

• Snapshot commands are called from within a test suite

• Page assets including CSS and images are captured and sent

to Percy, along with the DOM snapshot

• Percy freezes CSS animations and stabilizes dynamic elements

for rendering

• Screenshots are rendered across browsers and screen widths

• Screenshots are compared against baseline screenshots to

detect visual changes

Running your visual testing suite
In addition to integrating with your stack, visual testing is designed to run

alongside your day-to-day workflow. To get consistent and truly automated

visual testing, most teams opt to run their tests along with their continuous

integration and continuous delivery (CI/CD) processes.

90% of all Percy builds run as part
of CI/CD.

By integrating visual testing into your CI/CD practices,

you can get visual feedback earlier in the development

lifecycle. Getting visual feedback earlier helps you catch

visual regressions and bugs before they make their way

to production and can aid in the design implementation

and review process.

A fast and fully-integrated CI/CD pipeline provides a

great foundation for adding visual testing. If you have

a comprehensive test suite and your team is already

accustomed to following CI/CD best practices, you’re

likely already well-positioned to get started with visual

testing.

Active Percy projects by workflow integration

Screenshot rendering
Because browsers are complex and the technologies that websites depend on are equally so, screenshot rendering is

incredibly resource-intensive. That’s why cloud-based services handle the end-to-end rendering process, decoupling

it from CI/CD with the infrastructure necessary to scale.

Percy takes a unique approach to snapshots and rendering. This is how it works:

Percy pioneered the use of the DOM
(Document Object Model) snapshot
to recreate the most deterministic
rendering of screens and components in
our own environment to avoid slowing
down your tests and builds.

Percy integrates with all the popular CI/
CD services such as CircleCI, Travis CI,
Jenkins, Buildkite, and more.

Read about Percy’s CI integrations >

Percy projects running with CI

Percy projects running without CI

https://docs.percy.io/docs/ci-setup?pdf&utm_medium=pdf&utm_source=percy_report&utm_content=sovt

State of Visual Testing Report 15

Visual diff detection
Once screenshots are rendered across selected widths and browsers, they

are compared against baselines and analyzed for visual diffs.

There can be one of two outcomes for each comparison—either a visual

change is detected or not. If diffs are detected, a review is necessary to

determine whether they’re intentional and ready to approve or unintentional

and need to be remediated.

Of all Percy builds,
64% are visually
unchanged. Of builds
with diffs, the average
diff ratio—the percent
of snapshots within a
build—is 12%.

The distribution of builds by

diff ratio shows a spike at 100%

because it’s common for a shared

style change to result in changes to

all snapshots within a build.

Sometimes referred to as perceptual
diffs, pdiffs, CSS diffs, and UI diffs, visual
diffs are the computational difference
between two snapshots. In the Percy UI,
diffs are highlighted in red so you can
easily see what has changed.

Distribution of Percy builds by diff ratio

0%

10%

20%

30%

40%

50%

60%

70%

100%80%60%40%20%0%

Pe
rc

en
t o

f a
ll

Pe
rc

y
bu

ild
s

Keep in mind that when taking snapshots across various screen sizes and browsers, you are comparing individual

screenshots across permutations. All comparisons might not have diffs, and the diffs might vary from permutation to

permutation—some may be intentional styling changes, while others might be unintentional visual bugs.

Visual diff detection is a big part of visual testing, but it’s also valuable when visual changes are not detected. Having

the assurance that your UI has remained stable and unchanged is a benefit of visual testing that’s often overlooked,

but it’s by far the most common visual testing scenario.

State of Visual Testing Report 16

Visual review workflow
A quick and easy visual review process is crucial to the success of your visual testing efforts. Getting relevant

feedback and timely alerts are also important to consider when implementing visual testing.

Reviewing visual changes

When a visual change has been detected, it’s up to you to discern whether the changes are intentional or not.

To make that process as efficient as possible and minimize false positives, visual testing platforms use advanced diff

detection strategies and stabilization techniques. They also aim at clearly highlighting visual diffs, grouping similar

changes, and giving you tools to debug if necessary.

It’s also crucial to have a mechanism in place for you to designate whether the detected visual changes are intentional

or unintentional. Approvals unblock code reviews, empowering your team to deploy with full confidence in your UI. By

requesting changes, you can alert your team that something doesn’t look right, so you can remediate before merging.

Reviewed snapshots by action since Percy released the
request changes feature in August 2019.

Percy offers several source control
integrations for GitHub, Bitbucket, and
Gitlab to provide synchronized visual
reviews and notifications. Our webhooks
and Slack notifications provide additional
mechanisms to stay up-to-date.

Learn more about Percy’s integrations >

Percy’s baseline picking logic aims to
include only changes made in the branch
itself by looking at the branch history
and picking the “common ancestor” as
the baseline.

Learn more about baselines >

Workflow and integrations

In addition to being kicked off as part of CI/CD processes, visual testing

needs to provide relevant feedback through the most accurate screenshot

comparisons. Because visual testing is so embedded into developer

workflows, it depends heavily on your branch history and the master branch

to pick the correct baseline.

Integrating with a source code repository also keeps visual tests in sync

with code reviews. A source control integration is also the best way to get

notifications where they’re most helpful and actionable—in your commit and

pull request or request checks.

Of all actioned Percy builds with
diffs, 96% were approved compared
to 4% of builds with changes
requested.

We’ve found that being able to communicate with your

team about visual changes is key to keeping track of

and prioritizing visual changes. Asking questions about

designs, blocking approvals, and alerting your team of

visual bugs are all crucial to visual reviews.

Approved snapshots

Requested changes snapshots

https://docs.percy.io/docs/source-code-integrations?pdf&utm_medium=pdf&utm_source=percy_report&utm_content=sovt
https://docs.percy.io/docs/baseline-picking-logic?pdf&utm_medium=pdf&utm_source=percy_report&utm_content=sovt

State of Visual Testing Report 17

Visual testing best practices

Our goal at Percy is to help teams get continuous, relevant, and actionable visual feedback at scale. With our visual

testing and review platform, we’ve been able to help teams big and small automate manual QA, catch visual bugs, and

deploy with complete confidence.

We also have years of experience building the processes and guidance necessary to implement visual testing

effectively. In this section, we’ll provide some recommendations on how to best implement visual testing for optimal

coverage and workflow.

Screenshot of the Percy build UI

State of Visual Testing Report 18

Visual coverage best practices
When getting started with visual testing, it’s important to think about and plan

the level of visual coverage that is feasible and useful to your team.

Depending on your test suite robustness and size of your app, we recommend

starting with the pages that keep you up at night.

Often those are pages and elements that:

• Are most important to revenue and user experience

• Have the most teams working on them

• Are the most brittle or have the most legacy code

• Have the lowest test coverage

Distribution of the number of snapshots in all Percy builds

While every project is
different, we found that
projects have an average
of 62 snapshots—
excluding variations
across widths and
browsers—per build.

The average number of snapshots

per project varies drastically by

the type of project. Projects testing

component libraries have 102

snapshots on average compared to

26 for projects testing full pages.

Similarly to how code coverage gives
a sense of how well functional test
suite covers your application, visual
coverage is used to describe how
much of an application is covered by
visual testing. Rather than looking at
how many lines of code are covered,
visual testing is about which parts of
your UI are most important to test.

Alternatively, focus your efforts on getting visual coverage on screens and templates that get the most traffic or the

components that get utilized the most. For a small marketing website, that might be 10 snapshots, but for a complex

web app, it might be 100 or even 1000 snapshots.

In addition to obvious pages or components, you should also consider their different variations. More complex states

such as dropdowns, logged in states, and page interactions tend to be the most commonly overlooked during manual

QA and thus are more vulnerable to regressions. They’re also more time-consuming to manually check, so the initial

investment may be worth the return.

0%

10%

20%

30%

100+9585756555453525155

Number of snapshots per build

Pe
rc

en
t o

f a
ll

Pe
rc

y
bu

ild
s

Regardless of how much visual coverage you start with, you should always be improving and expanding it over time,

just as you continuously write new functional tests as you build new features.

40%

State of Visual Testing Report 19

Cross-browser visual testing best practices
Supporting and testing across multiple browsers is also a huge challenge for frontend developers. Being able to catch

bugs caused by subtle rendering differences across different browsers is also an important benefit of visual testing.

Responsive visual testing best practices
It can be difficult to manually test your UI across different devices or screen sizes, which is why responsive visual

testing is hugely valuable and a feature of visual testing to make the most of. When setting up your visual testing suite,

we recommend testing across all the widths that you currently support.

Distribution of Percy snapshots across screen widths

Percy builds by number of browsers enabled

86% of Percy builds test across
more than one browser.

Testing across multiple browsers is recommended for

most teams getting started with visual testing, as it is

a great way to expand your visual coverage with no

additional effort.

Across all Percy
snapshots, the two
most popular width
sizes are 1280px
and 375px.

Percy builds test snapshots across

an average of 2.6 widths, and 93%

of projects include two or more

widths.

Top most commonly rendered at screen widths by pixels

Pe
rc

en
t o

f a
ll

Pe
rc

y
sn

ap
sh

ot
s

0%

10%

20%

30%

40%

1920 px1280 px1200 px1024 px768 px375 px320 px

One browser enabled

More than one browser enabled

State of Visual Testing Report 20

Visual testing frequency best practices
In addition to balancing the depth and breadth of visual coverage, getting the right visual testing frequency is critical.

You should strive to run your visual testing suite whenever code is pushed. For larger teams or teams working across

disciplines within a monorepo, however, it may be cumbersome to run visual testing on every single pull request or

commit. In those cases, it’s easy to adjust your visual testing frequency to meet your needs.

From Percy project
data, teams run 46
builds per week, on
average.

As you can tell from the distribution

on the right, more projects run

fewer than 25 builds per week, but

there are several projects that run

more than 100 builds per week.

Regardless of how frequently your visual testing suite runs, the goal is to surface timely and relevant visual feedback

to help your team deploy faster and with more confidence.

Distribution of Percy projects by frequency of builds per week

0%

5%

10%

15%

20%

25%

30%

100+9585756555453525155

Number of builds run per week

Pe
rc

en
t o

f a
ll

Pe
rc

y
pr

oj
ec

ts

State of Visual Testing Report 21

Conclusion

As visual testing adoption has gained traction over the past several years, the benefits have become clear.

When utilized alongside traditional testing methods, visual testing bolsters
productivity and confidence for teams building and maintaining frontends.

We hope this report has taught you more about the mechanics of visual testing, as well as given you a

glimpse into the visual testing ecosystem. By providing benchmarks and best practices, we hope to start a

meaningful conversation about the future of visual testing.

In 2020 and beyond, we are looking forward to helping more teams get continuous visual feedback and close the

visual confidence gap.

We’d love to hear from you and are happy to answer any questions you may have. You can reach us at hello@percy.io.

Ready to get started with visual testing? We welcome you to sign up for a free Percy account and check out these

resources to help you integrate visual testing.

Percy resources:

Getting started with Percy overview

Percy SDKs overview documentation

Running Percy alongside CI/CD

Percy’s source control integrations

Percy’s visual testing plans and pricing

Sign up for Percy to get started

with visual testing for free. With our

free plan, you get 5,000 monthly

snapshots and 10 included users.

Start for free

https://docs.percy.io/docs?pdf&utm_medium=pdf&utm_source=percy_report&utm_content=sovt
https://docs.percy.io/docs/sdks?pdf&utm_medium=pdf&utm_source=percy_report&utm_content=sovt
https://docs.percy.io/docs/ci-setup?pdf&utm_medium=pdf&utm_source=percy_report&utm_content=sovt
https://docs.percy.io/docs/source-code-integrations?pdf&utm_medium=pdf&utm_source=percy_report&utm_content=sovt
https://percy.io/pricing?pdf&utm_medium=pdf&utm_source=percy_report&utm_content=sovt
https://percy.io/signup?pdf&utm_medium=pdf&utm_source=percy_report&utm_content=sovt

